
Federated Learning-based Inter-slice Attack

Detection for 5G-V2X Sliced Networks

Abdelwahab Boualouache*, and Thomas Engel

FSTM, University of Luxembourg, Luxembourg

Email: {abdelwahab.boualouache thomas.engel}@uni.lu

Abstract—As a leading enabler of 5G, Network Slicing (NS)
aims at creating multiple virtual networks on the same shared
and programmable physical infrastructure. Integrated with 5G-
Vehicle-to-Everything (V2X) technology, NS enables various
isolated 5G-V2X networks with different requirements such
as autonomous driving and platooning. This combination has
generated new attack surfaces against Connected and Automated
Vehicles (CAVs), leading them to road hazards and putting users’
lives in danger. More specifically, such attacks can either intra-
slice targeting the internal service within each V2X Network
Slice (V2X-NS) or inter-slice targeting the cross V2X-NSs and
breaking the isolation between them. However, detecting such
attacks is challenging, especially inter-slice V2X attacks where
security mechanisms should maintain privacy preservation and
NS isolation. To this end, this paper addresses detecting inter-
slice V2X attacks. To do so, we leverage both Virtual Security
as a Service (VSaS) concept and Deep learning (DL) together
with Federated learning (FL) to deploy a set of DL-empowered
security Virtual Network Functions (sVNFs) over V2X-NSs. Our
privacy preservation scheme is hierarchical and supports FL-
based collaborative learning. It also integrates a game-theory-
based mechanism to motivate FL clients (CAVs) to provide high-
quality DL local models. We train, validate, and test our scheme
using a publicly available dataset. The results show our scheme’s
accuracy and efficiency in detecting inter-slice V2X attacks.

Index Terms—5G-V2X; Network Slicing; Security; Machine
learning; Misbehaving Detection Systems

I. INTRODUCTION

The emergence of the Fifth-generation (5G) mobile sys-

tems has brought many advances for Cooperative Intelligent

Transportation Systems (C-ITS). As a part of C-ITS, CAVs

were designed to make our roads safer while providing traf-

fic efficiency and user convenience. The 3GPP Release 16

[1] enables CAVs with ultra-low and ultra-reliable 5G-V2X

communications in a decentralized way via the PC5 interface.

In addition, CAVs are supported by a set of 5G enabling

technologies, such as Software Defined Networking (SDN),

Network Function Virtualization (NFV), Multi-access Edge

Computing (MEC), and NS. The latter creates independent

virtual networks on top of the same physical infrastructure. For

CAVs, NS can enable several 5G-V2X networks with different

requirements to co-exist and operate together while enjoying

isolation [2]. NS then increases the exploitation degree of

5G physical infrastructure while boosting the performance of

CAV applications and services. However, these benefits are

underlying new cybersecurity challenges to CAVs. Indeed,

V2X-NSs are vulnerable to several attack surfaces exposed

by NS-enabling technologies (SDN and NFV). In addition,

5G-V2X nodes can exploit NS breaches to generate attacks

against NS functioning. For example, malicious CAVs can

collaboratively launch denial of V2X-NS(s) services to make

them unavailable. These attacks impact not only the targeted

V2X-NS(s) but also other co-existing V2X-NSs since they all

share the same physical resources. Therefore, detecting and

defeating V2X-NS attacks is crucial since they can put the

lives of both drivers and passengers in danger by leading CAVs

to high-risk situations. We can classify V2X-NS attacks into

two categories: i) intra-slice attacks in which the attacker(s)

and the target(s) belong to the same V2X Network Slice

(V2X-NS), and (ii) inter-slice attacks in which the attacker(s)

and/or the target(s) belong to different V2X-NSs. On the one

hand, detecting inter-slice V2X attacks is more challenging

since attackers can be distributed over NSs. Thus, security

mechanisms should detect attacks while maintaining V2X-

NSs isolation and preserving private information. On the

other hand, V2X-NS attackers are usually part of the network

(internal), which makes them resistant to cryptographic solu-

tions. Instead, intrusion detection schemes are more efficient

to detect internal V2X-NS attacks, especially when taking

advantage of the latest advances in Machine Learning (ML).

To this end, this paper addresses detecting inter-slice V2X

attacks while preserving both isolation and privacy within

V2X-NSs. Our scheme leverages Virtual Security as a Ser-

vice (VSaS) concept [3] and Deep learning (DL) together

with Federated learning (FL) design to deploy a set of

DL-empowered security Virtual Network Functions (sVNFs)

over V2X-NSs. sVNFs aim not only at detecting attacks

and reporting them but also at participating in the training

process. Our privacy-preserving scheme is hierarchical and

supports FL-based collaborative learning while continuously

updating attack detection DL models. It also integrates a game-

theory mechanism to incentivize FL clients (CAVs) to provide

high-quality local DL models. The evaluation results show

our global model’s accuracy and the incentive mechanism’s

efficiency.

The remainder of this paper is organized as follows. Sec-

tion II describes related works. The design of our scheme and

targeted inter-slice V2X attacks are presented in Section III.

The game theory-based model to motivate FL clients (CAVs) is

described in IV. Section V depicts the performance evaluation

results. Finally, Section VI concludes the paper.

II. RELATED WORK

Several ML collaborative learning schemes have been pro-

posed to detect V2X attacks. The authors of [4] trained an

attack detection scheme based on a distributed ML approach.

In this scheme, vehicles collaboratively build the global model

without exchanging local datasets but instead share updates of

their loss functions. The authors of [5] proposed a collabora-

tive learning attack scheme consisting of four phases. Vehicles

first build their local models based on their collected data.

Then, they share models according to the requests received

from the neighbors. After that, they evaluate models to detect

malicious models. Finally, a collaborative model is constructed

based on valid models checked in the third phase. The authors

of [6] proposed an attack detection scheme based on SDN.

It uses DL with generative adversarial networks to enable

multiple distributed SDN controllers to jointly train the ML

model for the entire network. The authors of [7] leveraged FL

to propose a privacy-preserving attack detection scheme for

position falsification attacks. In this scheme, vehicles serve

as FL clients, who train their local models based on periodic

messages from neighboring vehicles and send updates to the

FL server. The authors of [8] proposed an FL-based scheme for

detecting V2X position-tracking attacks. The scheme enables

FL at the edge for collaborative learning while preserving

the privacy of vehicles. The authors of [9] proposed a col-

laborative learning attack detection scheme based on roadside

units. These latter select FL clients from vehicles under their

coverage for training global DL models. The authors [10]

proposed an FL-based attack detection scheme that offloads

the learning process from servers to distributed vehicular edge

nodes. The scheme trains a transformer network to learn

spatial-temporal representations of vehicular traffic flows for

better classification of attacks. However, previous schemes

aim at detecting traditional V2X attacks. Thus, collaborative

learning for detecting inter-slicing 5G V2X attacks is not yet

explored. Moreover, The authors of [11] and [12] proposed

a DL-based attack detection scheme for distributed denial

of service (DDoS) attacks in 5G networks. However, these

schemes are centralized and are only proposed to detect DDoS

attacks on the core network and consider neither the 5G New

Radio (NR) attacks, including V2X and the MEC, nor V2X-

NS attacks. Unlike the schemes above, we exploit FL, DL, and

VSaS to propose collaborative learning enabling scheme for

detecting inter-slicing 5G V2X attacks. VSaS is a flexible and

elastic approach, supporting the 5G security concept, which

consists in integrating sVNFs in the slice life cycle [12].

III. INTER-SLICE V2X ATTACK DETECTION SCHEME

This section describes our inter-slice V2X attack detection

scheme. Figure 1 shows 5G-V2X NS architecture consisting

of (i) the NR including CAVs and gNodeBs, (ii) the MEC

nodes, and (iii) the 5G Core. 5G-V2X NSs are created and

managed by the Network Slice Manager (NSM). During the

creation of the V2X-NSs, the NSM allocates the necessary

storage and processing resource to satisfy the requirements

defined in the Service-Level Agreement (SLA). The NSM also

implements all VNF service chaining to meet V2X-NSs needs

while ensuring the isolation level determined by the SLA. The

isolation level allows specifying the VNFs dedicated to V2X-

NS and the ones shared between V2X-NSs. Figure 1 presents

two V2X-NSs with different network requirements. These

V2X-NSs share VNFs at the core level and have dedicated

VNFs at the MEC and NR levels. Each CAV is equipped with

a 5G network card to communicate with other CAVs via the

PC5 interface and C-V2X applications via the Uu interface.

To ensure the end-to-end security of V2X-NSs, the Security

Operations Center (SOC) deploys a set sVNFs within V2X-

NSs with the help of the NSM. These sVNFs have two tasks:

(i) detect inter-slice V2X attacks and (ii) contribute to building

the global FL model. sVNFs are deployed at different levels

of V2X-NSs. At the 5G NR level, sVNFs are deployed at

some selected CAVs. This selection can be made by obtaining

the list of most trusted CAVs from SOC, and thereby, the

most trusted CAVs host sVNFs. Practically, we expect that

CAVs are equipped with a hypervisor/container engine, which

can support one or more sVNFs. At the MEC, sVNFs are

deployed according to the number of CAVs subscribed to the

V2X-NS. In addition, sVNFs can migrate from a MEC node

to another node, according to the mobility of CAVs. Besides,

at the 5G core, sVNFs are deployed according to the isolation

level defined by the SLA.

Data Network

Malicious vehicleSecurity Virtual Network
Function

5G
 N

R
(N

ew
 R

ad
io)

5G
 C

or
e N

etw
or

k
5G

 E
dg

e N
etw

or
k

MNO

 vBBU

sVNF

VNF

VNF

sVNF

sVNFsVNF

UPF SMF AMF NSSF

NRFNEFAUSFUDM

N4

Ne
tw

or
k S

lic
e M

an
ag

er

Security Operations Center

sVNF

VNF
VNF

VNF

VNF

C-V2X
Applications VNF Virtual Network Function VNF

sVNF

Malicious VNF

FL Coordinator 1FL Coordinator 2

Global FL
 Coordinator

AF

FL Model training Attack reporting

Fig. 1: FL-based inter-slice attack detection scheme for 5G-

V2X NS

We distinguish three types of sVNFs: (i) Ordinal sVNFs

deployed on CAVs aim to detect inter-slice V2X attacks and

train local DL models, (ii) sVNFs deployed on the MEC,

called FL coordinators, aim at detecting inter-slice V2X at-

tacks and aggregate local DL models received from CAVs,

2

and (iii) An sVNF deployed on the 5G Core, called Global

FL coordinator, aims to detect V2X inter-slice attacks and

aggregate DL models received from FL coordinators. To this

end, sVNFs embed two engines: (i) DL model learning engine,

which is used for training local DL models in the case of

ordinal sVNFs, and for aggregating DL models in the FL

coordinators, and (ii) Attack detection engines, which uses a

DL model to detect the inter-slice attacks.

Our scheme thus includes three processes: (i) inter-slice

V2X attack detection process, (ii) FL collaborative learning

process, and (iii) FL global model update process. While the

attack detection process is always active, collaborative learning

and model update processes are on-demand triggered by the

SOC. In the following, we briefly describe each of these

processes:

1) Attack detection: In this process, sVNFs use DL mod-

els, which are deployed on their sVNFs to detect inter-

slice V2X attacks and report them to the SOC. Initially,

the SOC installs a basic version of the DL model on

sVNFs, as shown in Figure 2 (stage 1), which is updated

after each FL collaborative learning process.

2) FL Collaborative learning: As shown in Figure 2

(stage 2), during this process, the SOC pushes an initial

DL model via secure communication channels to all

FL coordinators along with some parameters such as

the number of rounds to run and the rewarding price,

which is used to motivate FL clients (CAVs). The FL

coordinators select FL clients for performing the FL

training process while encouraging them by using the

rewarding price for providing high-accuracy local DL

models. The FL coordinators also aggregate all the local

DL models received from FL clients. Once its model

is ready, the FL coordinator sends it to the global FL

coordinator. Once the latter gets all the global models

from all FL coordinators, it aggregates them and sends

the resulting model to the SOC for evaluation.

3) Model update: As shown in Figure 2 (stage 3), the

DL model update process follows the FL collaborative

training process. Thus, the SOC forwards the DL model

to all sVNFs to update their attack detection engine

to adapt to the adversary environment and enhance the

detection rate accordingly.

As previously mentioned, detected inter-slice attacks are

reported to the SOC, which is in charge of reacting in response

to them and updating the list of trusted CAVs. Besides, we

focus on detecting inter-slice V2X attacks. More precisely,

two classes of attacks are considered in this paper.

• Class 1 (Distributed Denial of Slice Service (DDoSS)):

The attackers of this class try to prevent V2X-NS mem-

bers from having ordinal access to V2X-NS services.

DDoSS is a variant of the DoSS attack that involves

multiple attackers belonging to multiple V2X-NSs, which

can collaborate and synchronize to perform the attack.

DDoSS can target different parts of V2X-NSs, ranging

from the NR to the 5G core. Moreover, attackers can

Stage1:
Initial model
deployment

Stage2:
FL collaborative

Training

The SOC The Global FL
coordinator

The FL
coordinators

5G CORE MEC CAVs

sVNFs

DL model
DL model

DL model

Local update

Start

Model aggregation

Start

Model aggregationModel evaluation

Model update

Model update

Model update

Stage3:
Model Updating

Fig. 2: FL collaborative learning and model update processes

exploit various network protocols of the protocol stack,

such as ARP, UDP, and HTTP.

• Class 2 (Unauthorized access to V2X slices): Attackers

of this class try to have unauthorized access to V2X-NSs

that are not attached to them. For example, two malicious

CAVs attached to two different V2X-NSs can create a

tunnel for sharing slice-sensitive information between

them. Unauthorized access to V2X-NS is a multi-stage

attack that starts by infiltrating the targets by exploiting

protocol flaws.

IV. FL CLIENTS INCENTIVE MECHANISM

This section describes our game-theory-based incentive

mechanism to motivate FL clients (CAVs) for providing high-

accuracy local DL models. We formulate the process of

building a global FL model as a Stackelberg game. This game

consists of the SOC acting as the leader and several CAVs

acting as followers.

A. Problem Formulation

We assume that an FL model building process is performed

between the SOC and a set of n CAV s: D = {CAV1, CAV2,

....., CAVn}, where an FL coordinator C is acting as a broker

between the SOC and the set of CAV s. Each CAVi is

rational and independently decides the level of contribution

in terms of the amount of data dtCAVi
used to train its local

DL model for serving the SOC. To ensure fair a game, the

reward that each CAVi gets is proportional to the amount of

data dtCAVi
in the total data used to train the global model.

However, training local DL models generate a processing

overhead as well as consumes energy. Thus, the utility of

CAVi should also consider the energy consumption and the

processing overhead together with the reward getting for the

SOC. Let αi represent the amount of consumed energy per

unit size to locally train the model and send it to C. Thus, the

overall energy consumption for CAVi is αi dtCAVi
. Moreover,

3

due to the resource limitation of CAVs, local training of

the DL model generates additional processing overhead that

may cause unnecessary inconvenience to different processes

running on CAVi. We formulate this processing overhead as

β dtCAVi
, where β is the processing overhead factor. To this

end, the utility function of CAVi is given by formula 1.

uCAVi
=

dtCAVi∑N
j=1

dtCAVi

P− αidtCAVi
− βdt2CAVi

(1)

where P is the price set by the SOC for building the global

FL model process. On the other hand, the utility function of

the SOC (USOC) depends on the monetary costs it pays (P)

and the accuracy of the global FL model that it obtains. Thus,

the utility gain of the SOC is simultaneously related to the

total amount of data dtCAVi
used to train the local model and

the corresponding accuracy of the local models li, which is

denoted by
∑N

i=1
lidtCAVi

. To this end, USOC is given by

formula 2.

USOC =
N∑

j=1

ljdtCAVj
− P (2)

B. Analysis of Stackelberg Equilibrium

Building an FL model between the SOC and n CAV s is

formulated as a Stackelberg game. The SOC acts as a leader

while n CAV s are regarded as followers. For motivating

the CAV s to participate in building the global FL model,

the SOC stimulates all the CAV s with reward parameter

P. According to the given reward parameter P, the CAV s
determine the amount of data (dtCAV si) to be used for training

their local DL models to maximize their utilities. In our

scheme, we assume that the FL coordinator (C) is fully aware

of the strategies and actions of CAV s. Thus, the SOC can

be replaced with a broker C to determine the optimal reward

parameter P∗. For a given reward P
∗, each CAV decides the

best response dt∗CAVi
to maximize the payoffs. The goal of the

proposed game is to find the unique Stackelberg equilibrium,

where both the SOC and CAV s have no motivations to

change their strategies unilaterally [13]. Thus, the Stackelberg

equilibrium is defined as follows.

Definition 1: we consider a series of decisions (dt∗CAVi
, P∗)

as the Stackelberg equilibrium, when and only when it meets

the following set of inequalities.

∀dtCAVj
, uCAVj

(dt∗CAVj
,P∗) ≥ uCAVj

(dtCAVj
,P∗) (3)

∀P, USOC(dt
∗

CAVi
,P∗) ≥ USOC(dt

∗

CAVi
,P) (4)

Theorem: The unique Stackelberg equilibrium exists be-

tween the SOC and CAV s.

Proof: We mathematically prove that the second derivative

of uCAVi
,

∂2uCAVi

∂dt2
CAVi

< 0. Thus, in the response of a given

reward parameter P, each CAV has its unique optimal strategy

dt∗CAVi
. In addition, since C has full knowledge of all the best

responses of ∀ CAVi ∈ D, dt∗CAVi
, the utility function of the

CAV can be adjusted accordingly. The maximum utility of

the CAV , P
∗ can be found using the formula 5, which is

the best strategy under given the optimal responses from all

CAV s, with ∂2USOC/∂P
2 < 0.

P
∗ =

l̄2(n− 1)2 − (
∑n

i=1
αi)

2

8β(n− 1)
(5)

To this end, both the leader and followers are satisfied with

their decisions (dt∗CAVi
,P∗) and have no motivation to change

their strategies. Thus, the unique Stackelberg equilibrium is

reached in this game.

V. PERFORMANCE EVALUATION

This section evaluates the performance of our scheme. We

first evaluate the performance of our FL collaborative training

model. We then perform an equilibrium analysis of the FL

model-building game.

A. FL model evaluation

In this section, we train and test our FL global model for

detecting inter-slice V2X attacks. The FL architecture was

implemented using Tensorflow and Keras Python libraries. The

global model was trained on the Google Colab platform, using

Compute Engine backend (TPU). FL clients (CAVs) have been

implemented as Tensorflow instances running local models.

For the multi-class classification, we use a DL model, which

will be embedded in sVNFs. We selected the CSE-CIC-IDS-

2018 dataset [14] to train our DL model since it adequately

covers different types of inter-slice V2X attacks, addressed in

this paper. To train our DL model, we have a dataset containing

a total of 1, 959, 893 instances (rows). The dataset originally

includes 80 features on network flows. But after converting

the timestamp feature to the date format, the number of

features becomes 85. Table I shows the dataset distribution

per each attack type. This dataset contains several features

with different scales, which slows down the training process.

To address this issue, we also rescaled the dataset using

MinMaxScaler, which normalizes dataset features to values

in the range of [0,1]. Before passing the training process, the

dataset was split into training, validation, and test sub-datasets.

Since this dataset contains more than 1 million rows, which is

in the order of big data, we thus apply recommendations given

in [15], by choosing 1% of the whole dataset as a validation

dataset, and 1% as a test dataset.

TABLE I: Dataset distribution for muli-class classification

Attack class Attack type Support

Benign 499717

Class 1
DDOS attack-HOIC 343006
DDoS attacks-LOIC-HTTP 288096
Bot 286191

Class 2
FTP-BruteForce 193360
SSH-Bruteforce 187589
Infilteration 161934

Our model consists of (i) an inputs layer with 84 neuron

nodes, (ii) two hidden layers with 85 and 42 hidden nodes

4

0 20 40 60 80 100
Rounds

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

(a) Accuracy

3 FL clients
5 FL clients
10 FL clients

0 20 40 60 80 100
Rounds

1.18

1.20

1.22

1.24

1.26

1.28

1.30

Lo
ss

(b) Loss
3 FL clients
5 FL clients
10 FL clients

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 po
sit

ive
 ra

te

(c) ROC curve
Benign
Bot
DDOS attack-HOIC
DDoS attacks-LOIC-HTTP
FTP-BruteForce
Infilteration
SSH-Bruteforce

Fig. 3: Model performance

for each of them, respectively, with a dropout rate set to

0.75, (iii) an output layer with 7 nodes based on one hot

encoding to detect and identify inter-slice V2X attacks. The

ReLU activation function is used for the hidden nodes, while

the softmax function is used for the output layer. To calculate

the weights of local models we use the Stochastic Gradient

Descent (SGD) with a learning rate equal to 0.01. We also

optimize the decay parameter, which controls how the learning

time change over time. Indeed, we decay the learning rate

with respect to the number of rounds rather than the number

of epochs. The Federated Averaging is used after each round

to calculate the weight of the global model. During the

training, we consider mini-batches of size 32. Table II lists

the hyperparameters of the model.

TABLE II: Training parameters of the global model

Parameter Value

Optimizer SGD
Learning rate 0.01
Batch size 32
Dropout 0.75
Ratio of validation/test dataset 1%
Rounds 100

We considered several evaluation metrics, including accu-

racy, precision, recall, F1-score, and the Area Under the Curve

(AUC). We also take several deployment parameters of our

DL model into the account, such as the training time, the

size of the model, and the inference time. Figure 3 (a) and

Figure 3 (b) show the obtained accuracy values and loss values,

respectively, versus the number of rounds, which is limited

to 100. This evaluation considers three configurations of FL

clients: 3, 5, and 10. Figure (b) shows that the loss decreases as

the number of rounds increases. In addition, Figure (a) shows

that obtained accuracy surpasses 96% for all the configurations

since the first rounds. Moreover, we can see that the accuracy

drops with the rise of FL clients. For example, accuracy

converges to more than 99% when 3 FL clients are selected,

while it still reaches 97% in the case of 10 FL clients. The

nature of FL architecture can explain this. Indeed, the number

of local models to be aggregated increases the chances of

divergence/conflicts in the aggregation process [16].

Table III shows the performance of the global model built

with 5 FL clients on the test dataset. We have obtained 97%

and 96% for accuracy and F1-score, respectively. We also got

99% for the AUC. These results demonstrate the efficiency of

our model to detect not previously seen attack instances and

distinguish between attack classes.

TABLE III: Attack detection results (FL clients = 5)

Accuracy Precision Recall F1-score AUC

0.97 0.98 0.95 0.96 0.99

Table IV shows the detection results of our global model

per each type of attack. These results demonstrate the high

capability of our DL model to distinguish the benign traffic

network from the malicious one. Indeed, our DL model with

95% of F1-score regarding identifying benign network traffic.

In addition, as shown in the Receiver Operator Characteristic

(ROC) curve, illustrated in inf Figure 3 (c), attack curves

are closer to the top-left corner, which further proves high

performance to classify inter-slice V2X attacks. Note that

the backline illustrates the performance of a basic classifier.

Moreover, Table IV shows high accuracy (>=99% of F1-

score) to detect most of the attacks (5/6). We obtain less

accuracy for the infiltration attack due to the lack of sufficient

traces to recognize this attack accurately. However, future FL

processes will enhance the accuracy, especially in the presence

of FL clients with traces of this attack.

TABLE IV: Multi-class results of the DL model

Traffic type Precision Recall F1-score Support

Benign 0.90 0.99 0.95 4997
Bot 0.99 1.00 0.99 2862
DDOS attack-HOIC 1.00 1.00 1.00 3430
DDoS attacks-LOIC-HTTP 1.00 1.00 1.00 2881
FTP-BruteForce 1.00 1.00 1.00 1934
Infilteration 0.99 0.68 0.80 1619
SSH-Bruteforce 1.00 1.00 1.00 1876

Table V gives our model deployment parameters. It takes

19.84 seconds on average to locally train local DL models,

5

which is a good time for collaborative training of the model.

Our model also has a small storage size (less than 1 MB),

making them lightly deployable in sVNFs, at different levels

from CAVs to the 5G core. Moreover, the Inference Time is

short. It takes less than 57.7 ms to decide if an event is an

attack or not, which demonstrates the fast detection of our

scheme, leading to an immediate reaction after detecting an

attack.

TABLE V: Model deployment parameters

Training time (s) Size (KB) Inference time (ms)

19.84 65.6 57.7

B. Incentive evaluation

In this section, we analyze the Stackelberg game for the FL

model. More specifically, we analyze the best responses of the

SOC and CAVs considering different model parameters. This

evaluation considers that the FL process consists of 50 CAVs.

We also consider that model parameters α and β are in the

range [0.1−0.9]. In addition, we assume that P ∈ [1−100]. In

Figure 4, we evaluate the utility USOC with the variation of

both the reward (P) and the local model accuracy (l̄). As we

can see in Figure 4, USOC is influenced by different reward

values P. In addition, USOC increases with the accuracy of

the local models l̄. The dashed lines in Figure 4 also show the

best strategy of the SOC P
∗ to have the maximum utility for

model accuracy l̄. Thus, the SOC should increase its P
∗ for

encouraging CAVs to provide higher local model accuracy. For

example, to increase the accuracy of the local model l̄ from

0.85 to 0.95, the SOC should increase the value of P
∗ from

56 to 78 i.e. 39%.

0 20 40 60 80 100
0

5

10

15

20

25

30

Th
e u

tili
ty

of
the

 SO
C

l = 0.8
l = 0.9
l = 0.95

Fig. 4: The utility of the SOC with the variation of P and l̄

VI. CONCLUSION

The failure in detecting inter-slice 5G-V2X attacks could

threaten the safety of both drivers and passengers. In this

paper, we have proposed a scheme for detecting inter-slice

V2X attacks. Our scheme combines the flexibility of virtual

security as a service concept and the power of deep learning

and federated collaborative learning to efficiently detect the

attack while maintaining privacy preservation and the V2X-

NSs isolation. We plan to perform featuring engineering as

future work to enhance the performance further.

ACKNOWLEDGMENT

This work was supported by the 5G-INSIGHT bilateral

project (ID: 14891397) / (ANR-20-CE25-0015-16), funded by

the Luxembourg National Research Fund (FNR), and by the

French National Research Agency (ANR).

REFERENCES

[1] 3GPP TS 23.287, “Architecture enhancements for 5G System (5GS) to
support Vehicle-to-Everything (V2X) services,” Jul 2020.

[2] C. Campolo, A. Molinaro, and V. Sciancalepore, “5G Network Slicing
for V2X Communications: Technologies and Enablers,” Radio Access

Network Slicing and Virtualization for 5G Vertical Industries, pp. 239–
257, 2021.

[3] Y. Khettab, M. Bagaa, D. L. C. Dutra, T. Taleb, and N. Toumi,
“Virtual security as a service for 5G verticals,” in 2018 IEEE Wireless

Communications and Networking Conference (WCNC). IEEE, 2018,
pp. 1–6.

[4] T. Zhang and Q. Zhu, “Distributed privacy-preserving collaborative
intrusion detection systems for vanets,” IEEE Transactions on Signal

and Information Processing over Networks, vol. 4, no. 1, pp. 148–161,
2018.

[5] F. A Ghaleb, F. Saeed, M. Al-Sarem, B. Ali Saleh Al-rimy, W. Boulila,
A. Eljialy, K. Aloufi, and M. Alazab, “Misbehavior-aware on-demand
collaborative intrusion detection system using distributed ensemble
learning for vanet,” Electronics, vol. 9, no. 9, p. 1411, 2020.

[6] J. Shu, L. Zhou, W. Zhang, X. Du, and M. Guizani, “Collaborative
intrusion detection for VANETs: a deep learning-based distributed SDN
approach,” IEEE Transactions on Intelligent Transportation Systems,
2020.

[7] A. Uprety, D. B. Rawat, and J. Li, “Privacy Preserving Misbehavior
Detection in IoV using Federated Machine Learning,” in 2021 IEEE 18th

Annual Consumer Communications & Networking Conference (CCNC).
IEEE, 2021, pp. 1–6.

[8] A. Boualouache and T. Engel, “Federated learning-based scheme for
detecting passive mobile attackers in 5g vehicular edge computing,”
Annals of Telecommunications, pp. 1–20, 2021.

[9] H. Liu, S. Zhang, P. Zhang, X. Zhou, X. Shao, G. Pu, and Y. Zhang,
“Blockchain and Federated Learning for Collaborative Intrusion Detec-
tion in Vehicular Edge Computing,” IEEE Transactions on Vehicular

Technology, 2021.
[10] M. Abdel-Basset, N. Moustafa, H. Hawash, I. Razzak, K. M. Sallam,

and O. M. Elkomy, “Federated Intrusion Detection in Blockchain-
Based Smart Transportation Systems,” IEEE Transactions on Intelligent

Transportation Systems, 2021.
[11] A. Thantharate, R. Paropkari, V. Walunj, and C. Beard, “Deepslice: A

deep learning approach towards an efficient and reliable network slicing
in 5g networks,” in 2019 IEEE 10th Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference (UEMCON). IEEE,
2019, pp. 0762–0767.

[12] N. A. E. Kuadey, G. T. Maale, T. Kwantwi, G. Sun, and G. Liu, “Deepse-
cure: Detection of distributed denial of service attacks on 5g network
slicing-deep learning approach,” IEEE Wireless Communications Letters,
2021.

[13] J. Zhang and Q. Zhang, “Stackelberg game for utility-based cooperative
cognitive radio networks,” in Proceedings of the tenth ACM international

symposium on Mobile ad hoc networking and computing, 2009, pp. 23–
32.

[14] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018.

[15] DeepLearning.AI, “Setting up your ml application: Train/dev/test sets,”
Coursera. Available online: https://cs230.stanford.edu/files/C2M1.pdf

(accessed on 15 April 2022), 2022.
[16] M. S. Ozdayi, M. Kantarcioglu, and R. Iyer, “Improving accuracy of

federated learning in non-iid settings,” arXiv preprint arXiv:2010.15582,
2020.

6

	Introduction
	Related Work
	Inter-slice V2X Attack Detection Scheme
	FL Clients Incentive Mechanism
	Problem Formulation
	Analysis of Stackelberg Equilibrium

	Performance Evaluation
	FL model evaluation
	Incentive evaluation

	Conclusion

